
A General Power System Network Topology Analysis Package

and Its Applications

ChengmingChengmingChengmingChengming Gong*, Shuhai FengShuhai FengShuhai FengShuhai Feng*, Xianfeng XuXianfeng XuXianfeng XuXianfeng Xu*,YuefengYuefengYuefengYuefeng Liang*,HongweiHongweiHongweiHongwei Du*

Abstract – Power system network topology analysis is a basic function in the Energy

Management System (EMS). The task of traditional topology analysis function is mainly to build

bus and island models for online network analysis modules, such as state estimation, contingency

analysis and dispatcher power flow. In this paper, some new topological objects in the power

system network, including bay, loop, route, etc, and model type of node, bus, extended-bus,

primary bus and primary extended-bus are abstracted. A power system topology analysis

(PSNTP) package is addressed based on the abstracted concepts. The package is implemented in a

general way by applying several basic graph theory algorithms to different model types. Functions

and interfaces provided by the package are listed and some ways to improve the package’s

flexibility and efficiency are discussed in the paper. Application examples in Supervisor Control

And Data Acquisition (SCADA) and state estimation modules show the package’s validity and

value.

Keywords: EMS, graph theory, Topology analysis.

1. Introduction

 Most real-time application software modules in EMS are

oriented to the node-model in which the detailed

configuration, including breakers, disconnectors and bus

bars, of plants and substations are concerned, while the

internal algorithms of the software modules often base on

the bus-model in which only impedance branches such as

lines, transformers and series-wound compensators are

reserved and groups of nodes connected by closed breakers

and disconnectors are expressed as buses. Thus the

connectivity of the node-model should be processed to

build bus-model. The traditional topology analysis function

accomplishes this task. Much work has been done on this

basic function [1]-[3].

 However, the function of topology analysis should not be

limited to the analysis of bus and island. Much other

topological information besides bus and island may

facilitate or enhance special functions greatly. For example,

in some state estimators, breakers are reserved as branches

for the purpose of status errors identification, and a reliable

by-pass identification algorithm addressed in [4] is based

on the topological concept of bay. Loop and route are also

useful concepts for analyzing or scheduling some special

operation modes. Although different application may

handle these topology analysis problems itself, it’s desired

to summarize the demands for topology analysis in the

EMS and develop a general network topology analysis

package. That many functions in the general package may

share some core algorithms guarantees the stability and

efficiency.

 This paper abstracts some new topological objects and

five model types in power system network and addresses a

general power system network topology analysis (PSNTP)

package based on these abstractions. The addressed

package has been integrated in a real EMS product, serving

as a shared library. More than five application modules

have taken advantages of the PSNTP package, with old

functions improved or new functions introduced. Some of

the applications will be introduces in the following sections.

2. Abstraction and identification of some useful

topological objects

Although different applications have different kinds of

demands for topology analysis, some basic topological

objects may play common roles in them. It’s important to

abstract these objects when designing a general-purpose

topology analysis package. Eight topological concepts have

been used in the addressed PSNTP package. They are

extended-bus, bay, loop, route, breaker-terminal control

relationship as well as the basic concepts in the traditional

topology analysis function - node, bus and island. This

section will describe these abstracted objects and discuss

* Nanjing Automation Research Institute. (gongchm@naritech.cn)

the algorithms for identifying them.

2.1 Node, bus and island

As is mentioned above, these three concepts are the

fundamental concepts in power network topology analysis

functions. A node is the minimum unit of connection points

in the network. A bus represents a group of nodes connected

by closed breakers and disconnectors, and buses connected

by impedance branches compose an island. Commonly,

basic Width-First-searching (WSF) or Depth-first-searching

(DSF) algorithm in graph theory [5] is applied to identify

bus and island objects with two steps: firstly, graphs with

nodes as vertexes and breakers and disconnectors as edges

are searched, and subsequently graphs with buses as

vertexes and impedance branches as vertexes are searched.

While the compositions of the graphs are different in the

two steps, the search algorithm is the same. Noticing that

the statuses of breakers and disconnectors change in

sequence is helpful to improve the search efficiency.

2.2 Extended-bus

Breakers are modeled as branches in many applications.

In these conditions, it’s natural to abstract an object to

represent the group of nodes connected by disconnectors.

We name the object as extended-bus here. With this

abstraction, a graph with extended-bus as vertexes and

breakers and impedance branches as edges is used for

further analysis. Same algorithm for identifying the bus and

island may be applied to the extended-bus.

2.3 Breaker-terminal control-relationship

In the graph corresponding to the extended-bus, the so-

called breaker-terminal control-relationship is abstracted to

give the result which breakers control a given terminal of

devices. This concept is useful at least in the following two

conditions: 1) to assign measurements from breakers to

devices terminals; 2) to select breakers to set outage of a

device. To get the control breakers for a given terminal, the

algorithm simply gets all breakers connected to the

extended-bus of the terminal node.

2.4 Bay

A bay represents a set of connected breakers and/or

disconnectors with physical bus bars as boundaries. This

abstraction comes from the definition of bay in the widely

accepted IEC61970-CIM standard [6], but only the

topological aspects are reserved here. Identification of bays

and their characteristics is helpful to arrange switch order

automatically. The bay-identification algorithm bases on the

basic search algorithm, but nodes of bus bars are marked as

visited nodes, resulting in that the searching stops at these

points.

Based on the abstraction of bay and breaker-terminal

control-relationship, ref [4] addressed an algorithm which

can identify the bypass operation mode reliably.

2.5 Route and loop

These two concepts are understandable from their literal

meanings. It’s a usual demand for finding the connectivity

of two arbitrary points in the network and getting the routes

if the points are connected. This is the demand for route

searching. WSF algorithm is used to search whether route

exists between two vertexes and the shortest one if route or

routes found. If there are two or more routes exist between

two points, any pair of routes composes a loop. It’s also

meaningful to give the whole information of looping in a

network. The minimum spanned tree may be used to denote

the whole looping information of the network because

any link branch added to the tree will form a new loop.

Loop and route are useful concepts for analyzing or

scheduling some special operation modes.

Loop and route here have general meanings. In different

conditions, the branches in route and loop may refer to

different types of objects. Sometimes, the search may base

on node-model, while in other conditions, the search may

base on bus-model. Moreover, in different conditions, the

status of breakers and disconnectors may be concerned or

not. To adapt the algorithms for different demands, several

model types will be abstracted in the next section. The route

and loop concepts may apply to any of the model types.

3. Abstraction of Model Types

While discussing the abstraction of topological concepts

in the above section, it has been pointed repeatedly that

different kinds of branches are concerned in different

applications. The extended-bus concept is abstracted to

present the condition where breakers must be concerned as

branches. Routine and loop must be adaptable for different

model types. This section will give the abstraction of five

model types classified by which kinds of branches types are

concerned and whether switch status are concerned.

3.1 Model types differentiated by branches types.

Three model types are abstracted to presents models in

which different branches are concerned. 1) Node-model

indicates that all breakers and disconnectors are reserved as

branches; 2) Bus -model indicates that only impedance

branches are reserved; 3) Extended-bus model indicates that

breakers are reserved as branches together with impedance

branches. Statuses of breakers and disconnectors are

concerned in the bus-model and extended-bus-model. All

open switches are removed during searching.

3.2 Model types in which switch-statuses should be

concerned

Two so-called primary models are abstracted to represent

the models in which switch statuses are neglected. It’s easy

to prove that the primary model has the least set of buses or

extended-buses.

Summarily, five model types are abstracted. Many search

interfaces in the addressed package have a parameter

specifying model type, thus different topology analysis

demands are met in a general way by applying same basic

algorithms to different model types.

4. Functions and interfaces

Based on the objects and model types described in the

former two sections, a series of functions are provided in

the package, most of witch will bill be introduces below in

four type. Interfaces in C++ format of some functions will

be given to further explain the functions if necessary.

4.1 Interfaces for creating model and setting operation

mode

Original information of the power network is set during

these interfaces. The model creation interface gets the

information through a predefined structure, which contains

identities and terminal node-names of all devices. Besides

the branches, injections and ground disconnectors are also

contained for identifying the energized or grounded status

of an island. Different interfaces are provided to set

operation modes. Callers may select one of them to set the

status of one, more or all breakers, disconnectors or ground

disconnectors.

4.2 Functions providing static topological information

These functions give the topological results independent

to operation mode. Basically, bay information is provided

by the following interface:

int GetBayInfo(BayResult_T &, const NodeName_T) ;

where BayResult_T is a pre-defined structure that contains

the breakers and disconnectors in a bay.

Some other interfaces provide further results based on

the analysis of bay characteristics, such as:

bool IsBypassBar(const DevId_T); and

bool IsBusLinker(const DevId_T);

which provide the characteristics of a bus bar or a breaker

respectively.

4.3 Functions providing dynamic information

These functions give the topological results which may

be affected by switch statuses. Results provided include

bus, island, extended-bus, active breaker-terminal control-

relationship and bypassed terminals.

4.4 Advanced functions

Although the above functions can give sufficient results

for normal purpose, to provide some advanced search

functions will facilitate the package-users. Three advanced

search functions are provided in the PSNTP package. The

interface pro-types are given and explained below:

int GetConnection(vector<DevId_T>&,

vector<DevId_T>&, const NodeName_T&, const

GraphModelType);

The first two parameters in this interface provide the

injections and branches connected to the node specified by

the third parameter.

int SearchRoute(vector<DevId_T> &, const

pair<NodeName_T, NodeName_T>&, const

GraphModelType);

The first parameter provides the branches in the route

between the nodes specified by the second parameter.

int GetTrees(vector<DevId_T>&, const

GraphModelType);

This function will return all the tree branches in the

network in the first parameter.

All of these advanced functions are adapted for different

model types, which are specified by the last parameter of

each interface.

5. Implementation issues

The flexibility and efficiency should be concerned for

industrial software. This section will discuss the Object-

Oriented (OO) methods used to obtain the flexibility and

some ways to improve the efficiency of the PSNTP package.

5.1 Detaching of interfaces and implementation

As the PSNTP package is implemented with C++

programming language, it’s very convenient to adopt the

OO properties of the language, the most important of which

is to detach the interface and implementation of the package

[7]. A virtual interfaces class is defined to describe the

interfaces, and an implementation class is derived from the

interface class. The implementation class is invisible to the

users and the users’ codes needn’t be recompiled when the

implementation class is modified.

5.2 Package layers

All the algorithms in the package are essentially based on

 the basic WFS or BFS algorithm from the viewpoint of gr

aph theory [5]. The core graph theory algorithms are set as t

he lowest layer in the package. The highest layer of the pac

kage is the interfaces described in section 4.

An intermediate layer is set between the user interface

layer and the core layer to manipulate the node names.

Array is the data structure used in the core layer, but the

node names and device identities in the user interfaces layer

may be discrete values and even strings. Index should be

created to carry out the conversion between subscripts and

names. We ever set the index map in the core algorithm, but

we decided to find new ways after observing that the

frequent conversion of name and subscript in the core

algorithm became the main consumer of CPU resources

when the package was applied to large-scale network.

Finding that the conversion may be carried out in batches,

we set the intermediate layer in the package. Then the index

map is created while creating the graph for the core layer

and will be used for converting the results in subscript form

to names. The efficiency of searching is improved about ten

times after the intermediate layer is set.

6. Application examples

Some application examples such by-pass identification

has been mentioned above. In this section, two more

applications of the package in operation simulation and

state estimation modules will be given.

6.1 PSNTP applied in operation simulation

It’s meaningful to simulate operations in the EMS before

actual remote-control taken. There are many rules that

constraint the operations, but most of the rules, from

avoiding to connect the energized and grounded islands, to

preventing outage or run devices by disconnectors, may be

judged by topology analysis. We have developed an

operation simulation (OPSIM) package based on the

PSNTP package. In the OPSIM package, bus and island

information from the PSNTP is used to avoid connectting

energized and grounded islands. Furthermore the

GetConnection() interface supports the OPSIM to give the

switch orders when the operators prepare to run an outage

device.

6.2 PSNTP applied in parameter error pre-processor

 Modern state estimators can identify and estimate the

parameter errors [8]. If a pre-process select the suspicious

branches for further processing, the efficiency of the whole

identification of parameter errors will be improved. We

developed a pre-processor which base on the criteria that

the sum of the production of real power and reactance of

each branch in a loop is close to zero. It’s necessary to find

all the independent loops in the network to implement this

pre-processor. The GetTrees() interface in the PSNTP

package just suits for this case.

7. Conclusion

Some work relating to enhance the topology analysis

function has been introduced in this paper. The abstraction

of some new topological concepts and model types, which

makes the basis of the addressed PSNTP package, is

discussed. Although the package has greatly benefited some

other real-time functions, there may be more useful and

interesting objects to be abstracted. It’s worthy to pay more

attention on the enhancements of topology analysis function,

and this kind of work may be carried out more efficiently if

both the topological characteristics of power sytem network

and the different kinds of theory graph algorithms are

comprehended.

References
[1] Erkeng Yu, "Energy Management System (Chinese),"

Beijing: Science Press, 1998.

[2] Phongsak D. Yehsakul, hj Dabbaghchi, "A Topology-

Based Algorithm For Tracking Network Connectivity,"

IEEE Trans. Power Systems, Vol. 10, No. 1, pp. 339-

346, Feb. 1995.

[3] Ying He, David C. Yu, Youman Deng, Jiansheng Lei.

"An Efficient Topology Processor for Distribution

Systems", in Proc. 2001 IEEE PES Winter Meeting, pp.

824-829.

[4] Chengming Gong, Yijun Yu, Xiaopeng Liang, "The

Algorithm of Discernment of Bypass (Chinese),"

Jiangsu Electrical Engineering, Vol. 24, No.4, pp. 10-

12, Jul. 2004.

[5] Robert Sedgewick, "Algorithms in C++, Part 5: Graph

Algorithms," 3rd ed., Boston: Pearson Education, 2001.

[6] IEC, "Draft IEC 61970 Energy Management System

Application Program Interface (EMS -API), CCAP

Guideline Preliminary Draft," 1999.

[7] Bjarne Stroustrup, “The C++ Programming Language,”

Special 3rd ed., Indianapolis: Addison-Wesley

Professional, 2000.

[8] W.-H. Edwin Liu, Swee-Lian Lim, "Parameter error

identification and estimation in power system state

estimation, " IEEE Trans. Power systems, Vol. 10, No.

1, pp. 200-209, Feb. 1995.

